
1/21

Introduction to TectoMT

Zdeněk Žabokrtský, Martin Popel

Institute of Formal and Applied Linguistics
Charles University in Prague

CLARA Course on Treebank Annotation, December 2010, Prague



2/21

Outline

PART 1
What is TectoMT?
TectoMT’s architecture
Overview of TectoMT’s tools and applications

PART 2 - demo



3/21

What is TectoMT?

multi-purpose NLP software framework
created at UFAL since 2005

main linguistic features
layered language representation
linguistic data structures adopted from the Prague Dependency 
Treebank

main technical features
highly modular, open-source
numerous NLP tools already integrated (both existing and new)
all tools communicating via a uniform OO infrastructure
Linux + Perl
reuse of PDT technology (tree editor TrEd, XML…)



4/21

Why “TectoMT” ?

Tecto..
refers the (Praguian) tectogrammar
deep-syntactic dependency-oriented sentence representation
developed by Petr Sgall and his colleagues since 1960s
large scale application in the Prague Dependency Treebank

.....MT
the main application of TectoMT is Machine Translation

however, not only “tecto” and not only “MT” !!!

re-branding planned for 2011:  TectoMT → Treex



5/21

What is not TectoMT?

TectoMT (as a whole) is not an end-user 
application

it is rather an experimental lab for NLP researchers

however, releasing of single-purpose stand-
alone applications is possible



6/21

Motivation for creating TectoMT

First, technical reasons:
Want to make use of more than two NLP tools in your 
experiment?  Be ready for endless data conversions, need for 
other people's source code tweaking, incompatibility of source 
code and model versions…
⇒ unified software infrastructure might help us in many aspects.

Second, our long-term MT plan:
We believe that tectogrammar (deep syntax)  as implemented in 
Prague Dependency Treebank might help to (1) reduce data 
sparseness, and (2) find and employ structural similarities 
revealed by tectogrammar even between typologically different 
languages.



7/21

Main Design Decisions
Linux
Perl as the core language

set of well-defined, linguistically relevant layers of
language representation

neutral w.r.t. chosen methodology ("rules vs. statistics")

emphasis on modularity
each task implemented by a sequence of blocks
each block corresponds to a well-defined NLP subtask
reusability and substitutability of blocks

support for distributed processing



8/21

Data Flow Diagram
in a typical application in TectoMT

INPUT
DATA
FILES

OUTPUT
DATA
FILES

MEMORY 
REPRESENTATION

OF SENTENCE
STRUCTURES

input format
converter

output format
converter

block 1 block 2 block n

non-Perl
tool X

non-Perl
tool Y

block 3 …
scenario:



9/21

Hierarchy of data-structure units
document

the smallest independently storable unit (~ xml file) 
represents a text as a sequence of bundles, each representing one 
sentence (or sentence tuples in the case of parallel documents) 

bundle
set of tree representations

of a given sentence

tree
representation of a sentence on a given layer of linguistic 
description

node
attribute

document's, node's, or  bundle's name-value pairs



10/21

Tree types adopted from PDT

tectogrammatical layer
deep-syntactic dependency tree

analytical layer
surface-syntactic dependency tree
1 word (or punct.) ~ 1 node

morphological layer
sequence of tokens with their lemmas 
and morphological tags



11/21

Trees in a bundle

in each bundle, there can be at most one tree for each "layer"

set of possible layers  =   {S,T} x {English,Czech,...} x {M,A,T,P, N}

S - source, T-target (analysis vs. synthesis, MT perspective)

M - morphological analysis
P - phrase-structure tree
A - analytical tree
T - tectogrammatical tree
N - instances of named entities

Example: SEnglishA - tectogrammatical analysis of an English 
sentence on the source-language side



12/21

Hierarchy of processing units

block
the smallest individually executable unit
with well-defined input and output
block parametrization possible (e.g. model size choice) 

scenario
sequence of blocks, applied one after another on given 
documents

application
typically 3 steps:
1. conversion from the input format
2. applying the scenario on the data
3. conversion into the output format source

language
target
language

MT triangle:
interlingua

tectogram.

surf.synt.

morpho.

raw text.



13/21

Blocks

technically, Perl classes derived from TectoMT::Block
either method process_bundle (if sentences are processed 
independently) or method process_document must be defined

several hundreds blocks in TectoMT now, for various purposes:
blocks for analysis/transfer/synthesis, e.g.
SEnglishW_to_SEnglishM::Lemmatize_mtree

SEnglishP_to_SEnglishA::Mark_heads

TCzechT_to_TCzechA::Vocalize_prepositions

blocks for alignment, evaluation, feature extraction, etc.

some of them only implement simple rules, some of them call 
complex probabilistic tools

English-Czech tecto-based translation currently composes of roughly 
140 blocks



14/21

Tools available as TectoMT blocks

to integrate a stand-alone NLP tool into TectoMT means 
to provide it with the standardized block interface
already integrated tools:

taggers
Hajič's tagger, Raab&Spoustová Morče tagger,  Rathnaparkhi
MXPOST tagger, Brants's TnT tager, Schmid's Tree tagger, Coburn's 
Lingua::EN::Tagger

parsers
Collins' phrase structure parser, McDonalds dependency parser, 
Malt parser, ZŽ's dependency parser

named-entity recognizer
Stanford Named Entity Recognizer, Kravalová's SVM-based NE 
recognizer

miscel.
Klimeš's semantic role labeller, ZŽ's C5-based afun labeller, Ptáček's 
C5-based Czech preposition vocalizer, ...



15/21

Other TectoMT components
"core" - Perl libraries forming the core of TectoMT infrastructure, 

esp. for memory representation of (and interface to) to the data

structures

numerous file-format converters (e.g. from PDT, Penn treebank, 

Czeng corpus, WMT shared task data etc. to our xml format) 

TectoMT-customized Pajas' tree editor TrEd

tools for parallelized processing (Bojar) 

data, esp. trained models for the individual tools, morphological 

dictionaries, probabilistic translation dictionaries...

tools for testing (regular daily tests), documentation...



16/21

Languages in TectoMT

full-fledged sentence PDT-style 
analysis/transfer/synthesis for English and Czech

using state-of-the-art tools 

prototype implementations of PDT-style analyses 
for a number of other languages

mostly created by students

Polish, French, German, Tamil, Spanish, Esperanto…



17/21

English-Czech translation in TectoMT

source language (English)   target language (Czech)

morphological layer

shallow syntax:
analytical layer

deep syntax:
tectogramatical layer

a-layer

m-layer

w-layer

t-layer

ANALYSIS TRANSFER SYNTHESIS



18/21

source language (English)   target language (Czech)

morphological layer

analytical layer

tectogramatical layer

a-layer

m-layer

w-layer

ANALYSIS TRANSFER SYNTHESIS
t-layer

tokenization
lemmatization
tagger (Morce)

parser (McDonald's MST)
analytical functions

mark edges to contract
build t-tree

fill formems grammatemes use
HMTM

query
dictionary

fill morphological categories
impose agreement
add functional words

generate
wordforms

concatenate

segmentation

English-Czech translation in TectoMT

rule based statistical                    &                     blocks



19/21

Real Translation Scenario
SEnglishW_to_SEnglishM::
Tokenization
Normalize_forms
Fix_tokenization
TagMorce
Fix_mtags
Lemmatize_mtree
SEnglishM_to_SEnglishN::
Stanford_named_entities
Distinguish_personal_names
SEnglishM_to_SEnglishA::
McD_parser
Fill_is_member_from_deprel
Fix_tags_after_parse
McD_parser REPARSE=1 
Fill_is_member_from_deprel
Fix_McD_topology
Fix_nominal_groups
Fix_is_member
Fix_atree
Fix_multiword_prep_and_conj
Fix_dicendi_verbs
Fill_afun_AuxCP_Coord
Fill_afun
SEnglishA_to_SEnglishT::
Mark_edges_to_collapse
Mark_edges_to_collapse_neg
Build_ttree
Fill_is_member
Move_aux_from_coord-
 _to_members
Fix_tlemmas
Assign_coap_functors
Fix_either_or
Fix_is_member

Mark_clause_heads
Mark_passives
Assign_functors
Mark_infin
Mark_relclause_heads
Mark_relclause_coref
Mark_dsp_root
Mark_parentheses
Recompute_deepord
Assign_nodetype
Assign_grammatemes
Detect_formeme
Rehang_shared_attr
Detect_voice
Fix_imperatives
Fill_is_name_of_person
Fill_gender_of_person
Add_cor_act
Find_text_coref
SEnglishT_to_TCzechT::
Clone_ttree
Translate_LF_phrases
Translate_LF_joint_static
Delete_superfluous_tnodes
Translate_F_try_rules
Translate_F_add_variants
Translate_F_rerank
Translate_L_try_rules
Translate_L_add_variants
Translate_LF_numerals_by_rules
Translate_L_filter_aspect
Transform_passive_constructions
Prune_personal_name_variants
Remove_unpassivizable_variants
Translate_LF_compounds

Cut_variants
Rehang_to_eff_parents
Translate_LF_tree_Viterbi
Rehang_to_orig_parents
Fix_transfer_choices
Translate_L_female_surnames
Add_noun_gender
Add_relpron_below_rc
Change_Cor_to_PersPron
Add_PersPron_below_vfin
Add_verb_aspect
Fix_date_time
Fix_grammatemes_after_transfer
Fix_negation
Move_adjectives_before_nouns
Move_genitives_to_postposit
Move_relclause_to_postposit
Move_dicendi_closer_to_dsp
Move_PersPron_next_to_verb
Move_enough_before_adj
Fix_money
Recompute_deepord
Find_gram_coref_for_refl_pron
Neut_PersPron_gender_from_antec
Override_pp_with_phrase_translation
Valency_related_rules
Fill_clause_number
Turn_text_coref_to_gram_coref
TCzechT_to_TCzechA::
Clone_atree
Distinguish_homonymous_mlemmas
Reverse_number_noun_dependency
Init_morphcat
Fix_possessive_adjectives
Mark_subject

Impose_pron_z_agr
Impose_rel_pron_agr
Impose_subjpred_agr
Impose_attr_agr
Impose_compl_agr
Drop_subj_pers_prons
Add_prepositions
Add_subconjs
Add_reflex_particles
Add_auxverb_compound_passive
Add_auxverb_modal
Add_auxverb_compound_future
Add_auxverb_conditional
Add_auxverb_compound_past
Add_clausal_expletive_pronouns
Resolve_verbs
Project_clause_number
Add_parentheses
Add_sent_final_punct
Add_subord_clause_punct
Add_coord_punct
Add_apposition_punct
Choose_mlemma_for_PersPron
Generate_wordforms
Move_clitics_to_wackernagel
Recompute_ordering
Delete_superfluous_prepos
Delete_empty_nouns
Vocalize_prepositions
Capitalize_sent_start
Capitalize_named_entities
TCzechA_to_TCzechW::
Concatenate_tokens
Ascii_quotes
Remove_repeated_tokens



20/21

Parallel analysis

Czech
M

A

T

English

an
al
ys
is

analysis

alignment

data needed for training the transfer 
phase models
Czech-English parallel corpus CzEng
8 mil. pairs of sentences with 
automatic PDT-style analyses and 
alignment



21/21

Summary of Part I

TectoMT ( Treex)
environment for NLP experiments

multipurpose, multilingual

PDT-style linguistic structures

Linux+Perl, open-source

modular architecture (several hundreds of modules)

capable of processing massive data

will be released at CPAN


	Introduction to TectoMT
	Outline
	What is TectoMT?
	Why “TectoMT” ?
	What is not TectoMT?
	Motivation for creating TectoMT
	Main Design Decisions
	Data Flow Diagram� in a typical application in TectoMT
	Hierarchy of data-structure units
	Tree types adopted from PDT
	Trees in a bundle
	Hierarchy of processing units�
	Blocks
	Tools available as TectoMT blocks
	Other TectoMT components
	Languages in TectoMT
	English-Czech translation in TectoMT
	English-Czech translation in TectoMT
	Real Translation Scenario
	Parallel analysis
	Summary of Part I

