
MTMonkey: A Scalable Infrastructure
for a Machine Translation Web Service

Aleš Tamchyna, Ondřej Dušek, Rudolf Rosa, Pavel Pecina {tamchyna,odusek,rosa,pecina}@ufal.mff.cuni.cz
Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University in Prague

ht tp://khresmoi.euPresented at MT Marathon, September 9–14, Prague, Czech Republic.

Application Server

Client

• There can be more
 workers per language pair
• Load balancing
 via simple round robin

Overall Architecture

Workers

XML-RPC

JSON

Workers: MT Monkeys

Sentence splitter
(en)

Tokenizer
with lowercasing

Translator
(en→cs)

Recaser
(cs)

Detokenizer
(cs)

A Robust Tokenizer

Load Testing

Moses Systems

• Moses for translation and recasing
• Independent instances of Moses server
• Communication via XML-RPC
• Binary phrase-tables
• Lazy-loading binary Ken LMs
• Fast start-up, low memory consumption
 (OS handles caching)

• MT web service for cross-lingual information
 retrieval in the medical domain
• Real-time requests through a RESTful JSON API
• Variety of clients, several language pairs
• Written in Python

https://github.com/ufal/mtmonkey

Fault Recovery

Python re-implemenation
of Moses (EMS) split-sentences.pl

Moses server

Moses server

Python re-implementation
of Moses detokenize.perl

The Khresmoi Project
Automated information extraction from biomedical documents
• Semantic search adapted to user requirements
• Automated analysis and indexing of medical images in 2D (X-Rays), 3D (MRI, CT),
 and 4D (MRI with a time component)
• Linking information extracted from biomedical texts and images to structured
 information in knowledge bases
• Support of cross-language search, including multilingual queries, and returning
 machine-translated pertinent excerpts
• Adaptive user interfaces to assist in formulating queries and interacting with results

A
v
g

.
re

sp
o
n

se
 t

im
e
 [

m
s]

0

600

1200

1 2 3 4 5 6

Translation directions

10 20 30 40 50 60 70 80 90 100

A
v
g

.
re

sp
o
n

se
 t

im
e
 [

m
s]

6000

3000

0

Simultaneously running clients

• Testing on sentences from the medical domain
• Each client sends 10 requests
 and reports the average response time
• Each test is repeated 10 times and averaged
• 4 worker instances per translation direction

• Response time grows linearly with the number
 of simultaneous requests
• For small numbers (1-10 clients), the response
 time is constant, around 0.5 s

• Adding more translation directions does not
 degrade performance much

• MTMonkey handles requests from various sources
• Input tokenization is not always identical
 ⇒ Need a universal tokenizer
• Aggressive: splits on any punctuation
• Language-independent
• Could decrease MT quality but reduces data sparsity
• (Almost) any input tokenization will be split identically

Python script/module

• Scheduled self-tests (using
 cron on the worker machines)
 with automatic restart on error
• Scheduled external testing with
 e-mail notification on error
• Automatic updates of workers,
 Moses code + Moses models

Load Balancing

Supported by the EU FP7 grant n°257528 (KHRESMOI) and Czech Ministry of Culture grant DF12P01OVV022
(NAKI/Amalach). Using resources of the Czech Ministry of Education project LM2010013 (LINDAT-Clarin).

