Remarks on bagging and boosting

Introduction to Machine Learning — Lab Sessions

by Martin Holub
Charles University in Prague, 2010-11

Combining multiple learners
* the more complementary the learners are, the more useful their combining is
* the simpliest way to combine multiple learners is voting
+ in weighted voting the voters (= base-learners) can have different weights

Unstable learning

* learning algorithm is called unstable if small changes in th etraining set cause
large differences in generated models

* typical unstable algorithm is the decision trees learning

* bagging or boosting techniques are a natural remedy for unstable algorithms

Bagging
* Bagging is a voting method that uses slightly different training sets (generated
by bootstrap) to make different base-learners. Generating complementary
base-learners is left to chance and to unstability of the learning method.

Boosting

* Boosting is one of the most important developments in classification
methodology. Boosting works by sequentially applying a classification
algorithm to reweighted versions of the training data and then taking a
weighted majority vote of the sequence of classifiers thus produced. For many
classification algorithms, this simple strategy results in dramatic
improvements in performance.

[from Wikipedia]

* Like bagging, boosting is also a voting method. In contrast to bagging, boosting
actively tries to generate complementary learners by training the next learner
on the mistakes of the previous learners.

* AdaBoost (Adaptive Boosting)
- originally proposed by Freund and Schapire (1996)
- nice presentation including theoretical details and a demonstration available

at http://cmp.felk.cvut.cz/~sochmjl /adaboost talk.pdf

Implementation in R

* packages can be found at http://cran.at.r-project.org/
* bagging() (package: adabag)
 ada() (package: ada)
- only binary classification
- nice visualization
« adaboost.M1() (package: adabag)
- simplier than ada()
- multiple classes

ADABAG package in R

* implements Adaboost.M1 algorithm and Breiman's Bagging algorithm using
classification trees
* Adaboost.M1 is a simple generalization of Adaboost for more than two classes
* a comprehensive reference manual available at http://cran.at.r-project.org/
* installation
> install.packages(“adabag”)
> library(adabag)

ADA package in R

creates a classification model as an ensemble of rpart trees

* uses the rpart library as its engine

* can handle only two-class problems

* documentation at http://cran.at.r-project.org/
also a comprehensive paper available at
http://www.stat.wvu.edu/~mculp/math/ada/ada manual.pdf

* another interesting reading/tutorial
http://en.wikibooks.org/wiki/Data_Mining Algorithms_In_R/Classification/adaboost

* installation
> install.packages(“ada”)
> library(ada)

* help pages for package 'ada' - list of R functions

ada Fitting Stochastic Boosting Models

addtest Add a test set to ada

pairs.ada Pairwise Plots and Variable Importancs Plot for Ada

plot.ada Plots for Ada

predict.ada Predict a data set using Ada

print.ada Model Information for Ada

soldat Solubility Data

summary.ada Summary of model fit for arbitrary data (test, validation, or training)

update.ada Add more trees to an ada object

http://cran.at.r-project.org/
http://www.stat.wvu.edu/~mculp/math/ada/ada_manual.pdf
http://www.stat.wvu.edu/~mculp/math/ada/ada_manual.pdf
http://cran.at.r-project.org/

Practical exercise

use the ,Solubility data“ from package ada

> library(ada)

> data("soldat")

> N <- nrow(soldat)

> set.seed(123); ind <- sample(1l:N)

> train_size <- N %/% 2

> train <- soldat[ind[1l:train size],]

> test <- soldat[ind[(train size + 1):N],]

make a decision tree model, tune the parameters without using the test set, and
(only then) compute accuracy on the test set

then use bagging() and compare the results

finally use adaboost.M1() and compare the results

3k 3k 3k 3k 3k 3k 5k 5k 3k >k >k 3k 5k 5k 3k >k 3k >k >k 5k 3k 3k 5k 5k 3k 5k 5k 3k 3k %k >k 5k 5k 3k 3k %k %k 5k 5k 5k 5k >k %k 3k 5k 5k 5k 3k %k %k 5k 5k 5k 3k %k %k >k 5k 5k 3k 5k %k >k 5k 5k 5k 3k %k %k >k >k 5k >k %k %k >k %k >k >k %k

Example solution using ada()

> train size <- N %/% 2

> test size <- N %/% 3

> train <- soldat[ind[1l:train size],]

> test <- soldat[ind[(train size + 1):(train size + test size)],]
> valid <- soldat[ind[(train_size + test size + 1):N],]

just to illustrate that you can work with more than one test set

control <- rpart.control(cp = -1, maxdepth = 14, xval = 0)
cp = -1 forces the tree to split until the depth of the tree achieves the maxdepth setting
xval is the number of cross-validations

H* RV

>m <- ada(y~., data = train, test.x = test[,-73], test.y = test[,73],
+ type = "gentle", control = control, iter = 70)

> summary(m)

> plot(m, test=T)

> varplot(m) # shows the relationship between descriptors and the response
the variable importance measure is based on improvement

ml <- addtest(m, valid[,-73], valid[,731])
summary(ml)

plot(ml,test=T)

varplot(ml)

VVVYV

