
Resource-light Approaches to Computational

Morphology

Part 1: Monolingual Approaches

Jirka Hana and Anna Feldman

Abstract

This article surveys resource-light monolingual approaches to morpho-
logical analysis and tagging. While supervised analyzers and taggers are
very accurate, they are extremely expensive to create. Therefore, most
of the world languages and dialects have no realistic prospect for mor-
phological tools created in this way. The weakly-supervised approaches
aim to minimize time, expertise and/or financial cost needed for their de-
velopment. We discuss the algorithms and their performance considering
issues such as accuracy, portability, development time and granularity of
the output.

1 Introduction

Morphological analysis (MA) is the process of labeling a word with tags encoding
its morphological properties. For example, the word rose in English could be
analyzed as a noun or as a verb. Morphological analysis considers words out of
context; morphological tagging, on the other hand, assigns each word a single tag
based on the context the word is in. Therefore, rose would be tagged as a noun in
The rose smells nicely. and as a verb in He rose from his seat. The granularity
of tagsets varies. Some tagsets encode part-of-speech only, while some add
additional grammatical information such as case, number, gender, tense, etc.
Depending on the language and captured distinctions, a tagset usually contains
between several tens to several thousands tags (e.g., about 40 in the English
Penn Treebank tagset (Marcus et al., 1993), about 4,000 in the Czech Positional
tagset (Hajič, 2004)). Morphological analysis and tagging may be accompanied
by lemmatization, a procedure assigning each word its lemma.1 For example,
rose would be assigned the lemma rose (for the noun) or rise (for the verb).

1By lemma we mean a form distinguished from a set of all forms related by inflection.
Lemmas are chosen by convention (e.g., nominative singular for nouns, infinitive for verbs).
We consider the terms base, canonical or citation form to be synonymous. Some NLP articles
(e.g., Yarowsky and Wicentowski, 2000), use the word root or stem to mean the same thing.
We use these terms with their traditional linguistic meaning: root refers to a morpheme which
is not an affix, while stem is a word without its inflectional affixes. For many English words,
all these terms refer to the same string.
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Morphological analysis, tagging and lemmatization are essential for many
Natural Language Processing (NLP) applications, of both practical and theo-
retical nature. They are commonly used in syntactic parsers, grammar checkers,
speech recognition systems, web searches, machine translation, text-to-speech
synthesis, etc.

Modern taggers and analyzers are very accurate. However, the standard
way to create them for a particular language requires a substantial amount of
expertise, time and money. For example, the Czech analyzer developed by Hajič
(2004) uses a lexicon with 300,000+ manually entered entries.2 The creation
of manually annotated corpora used for tagger training is also an extremely
expensive undertaking. As a result, most of the world languages and dialects
have no realistic prospect for morphological taggers or analyzers created this
way.

Various techniques have been suggested to overcome this problem, including
unsupervised methods. While completely unsupervised systems are scientifically
interesting, shedding light on areas such as child language acquisition or general
learnability, for many practical applications their precision is still too low. They
also completely ignore linguistic knowledge accumulated over several millennia,
often rediscovering rules that can be found in basic grammar books.

Another strand of research to overcome the lack of morphologically anno-
tated data uses lightly supervised methods, such as bootstrapping from a small
lexicon or labeled corpus, from manually encoded phonological or morphological
rules or paradigms, or even from resources from a different (but perhaps related)
language. We call these methods resource-light. Interestingly, Zipf’s law (1935;
1949) provides a convincing argument for resource-light systems against both
fully-unsupervised and fully-supervised systems. Not all manually provided re-
sources have the same impact on the accuracy of the system. A small amount
of high-impact resources can lead to an acceptable accuracy. At the same time,
no manually compiled lexicon can cover an arbitrary text. Feldman and Hana
(2010) document this on a statistic of Czech nouns obtained from the PDT cor-
pus (Hajič et al., 2000). On one hand, 10% of the most frequent noun lemmas
cover 74% of the noun tokens, and on the other, 50% of the less frequent lemmas
cover only 4% of tokens; moreover they are very text specific – 70% of them do
not occur in another portion of the corpus.

This survey focuses on approaches that require some kind of light supervi-
sion, such as seeding (e.g., Yarowsky and Wicentowski, 2000; Kohonen et al.,
2010), manual correction (e.g., Bosch et al., 2008; Oflazer et al., 2001), and
manual encoding of basic linguistic facts (e.g., Cucerzan and Yarowsky, 2002;
Feldman and Hana, 2010; Tepper and Xia, 2010). Learning from a different
language (e.g., Cucerzan and Yarowsky, 2002; Feldman and Hana, 2010; Bosch

2In this paper, we use the word lexicon to mean a list of stems or lemmas each with
information about its paradigm.

2



et al., 2008), another resource-light strategy, will be discussed in our forthcoming
survey (Feldman and Hana, 2012).

Resource-lightness falls on a continuum from a relatively high level of super-
vision to entirely unsupervised. Cucerzan and Yarowsky (2002), for instance,
observe that one useful measure of minimal supervision is the additional cost of
obtaining a desired functionality from existing commonly available knowledge
sources. They note that for a remarkably wide range of languages, there exist
plenty of reference grammar books and dictionaries which are invaluable lin-
guistic resources. Clearly, different types of resources require a different amount
of time and/or expertise. Cucerzan and Yarowsky (2002) need one day plus
a reference grammar,3 while Hana et al. (2011) need one week, a reference
grammar and a resource for a related language. In turn, many so-called unsu-
pervised taggers (e.g., Merialdo, 1994; Cutting et al., 1992; Brill, 1995; Banko
and Moore, 2004; Wang and Schuurmans, 2005) need no annotation but require
a list of all possible tags for each form which is generally equivalent to requiring
a morphological analyzer.

In the following, we discuss various problems and methods of resource-light
morphological induction in more detail. Table 4 summarizes the main points.

2 Morphological analysis, morphemes and in-
flections

In this section we discuss resource-light systems developed for processing mor-
phology in various languages. In addition to resource-light systems, we briefly
mention several prominent resource-intensive systems on one hand, and some
unsupervised approaches on the other. These approaches are not the focus of
this survey. The reason why we outline them here in a nutshell is that resource-
light systems often incorporate ideas from both unsupervised approaches and
resource intensive systems.

2.1 Approaches to morphological analysis

Simplifying somewhat, there are two major approaches to morphological anal-
ysis. Both approaches append strings to model the concatenative aspect of
morphology, but they differ in how they handle phonological changes4:

1. two level morphology (2LM; Koskenniemi, 1983; Karttunen and Beesley,
1992; Beesley and Karttunen, 2003). In mainstream linguistics, phonology
is handled via ordered rewrite rules. These rules can theoretically produce

3By reference grammars we mean grammars that usually focus on the fundamental gram-
mar structures normally taught in basic or introductory courses. As the approaches rely on
simple paradigm/ending tables (except Tepper and Xia (2008, 2010)), the quality and depth
of the grammar does not make much difference.

4We use the term phonological changes to refer to all phonological, graphemic and allo-
morphic changes. See also section 2.3.
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an unbounded number of intermediate forms before transforming an ab-
stract sequence of morphemes into a corresponding surface form. While
2LM employs similar rules, they relate only two levels (lexical and surface
level) and are all applied in parallel. A network of lexicons specifies the
lexical forms of morphemes and the basics of their morphotactics (i.e.,
legal orderings and combinations). In its current version, 2LM is usually
realized as a finite state transducer. The formalism is powerful enough to
model the majority of morphologies, even though modeling some phenom-
ena is less than straightforward.

2. so-called engineering approach. Such systems do not have a phonological
component at all, or the component is rudimentary. Instead, phonological
changes and irregularities are factored into endings and a higher number
of paradigms. This implies that the terms stem and ending have slightly
different meanings from the ones they traditionally have. A stem is the
part of the word that does not change within its paradigm, and the ending
is the part of the word that follows such a stem. Examples of such an ap-
proach are Mikheev and Liubushkina (1995) for Russian and Hajič (2004)
for Czech. The advantages of such a system are its high speed, simple
implementation and straightforward morphology specification. The prob-
lems are a very high number of paradigms (several hundreds in the case of
Czech) and the impossibility to capture even the simplest and most regu-
lar phonological changes and so its limited ability to predict the behavior
of new lexemes. For example, the English noun paradigm (0 – s) would
be captured as multiple paradigms including, 0 – s, 0 – es, y – ies, f –
ves.

In addition, for many languages, morphology can be modeled and implemented
as a simple look-up table associating inflected forms with their analyses.

2.2 Learning of morphemes and/or paradigms

As stated above, traditional morphological analyzers rely on large lexicons spec-
ifying inflections of individual lemmas. These lexicons take years to develop and
have to be constantly updated. Therefore, significant research has been done
into ways of obtaining this information automatically. Trivially, unsupervised
systems are resource-light. However, we focus on approaches that use at least
some human supervision and therefore, here we mention only the most promi-
nent unsupervised and weakly supervised approaches that are relevant in the
subsequent discussion. See Hammarström and Borin (2010) for a detailed survey
of unsupervised approaches.

Linguistica (Goldsmith, 2001, 2009) is one of the most cited systems for
unsupervised morphological acquisition. From a plain text corpus, it learns
derivational and inflectional paradigm approximations (called signatures) to-
gether with a lexicon. It uses several heuristics to find candidate segmentations
of words into morphemes and then uses minimum description length (MDL Ris-
sanen, 1989; Kazakov, 1997; de Marcken, 1995) to choose between them. When
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Table 1: Results of (Kohonen et al., 2010) with various size of training data
Kohonen et al. (2010) Morfessor soa

labeled data size 500 600 800 1.5K 3.5K 10.5K 0 0
English 61.1 65.2 65.6 68.3 69.1 72.9 59.8 66.2
Finnish 49.1 52.7 54.9 56.4 58.2 60.3 44.6 52.5
All numbers are F-measures obtained on the Morpho Challenge 2009 test data (Kurimo et al.,
2010). The size of heldout data (500 words) is included in the size of training data.
For comparison, the Morfessor column reports the results of the original unsupervised Mor-
fessor system in the best configuration for the language and soa reports the results of the best
unsupervised tool at the Challenge (Bernhard, 2008).

comparing two grammars describing a corpus, MDL chooses the one which com-
presses the corpus the most (the size of the grammar is included in the compar-
ison). The system has been successfully applied to a range of languages.

Unlike Linguistica, Morfessor (Creutz and Lagus, 2002, 2004, 2005) splits
words into morphemes in a hierarchical fashion. This makes it more suitable
for agglutinative languages, such as Finnish or Turkish, with a large number
of morphemes per word. They use a Hidden Markov Model (HMM) to add a
simple morphotactic model.

Kohonen et al. (2010) modify Morfessor to allow semi-supervised learning. In
addition to a plain word list, the algorithm is given a set of 0-10,000 correctly
segmented words. Also, a heldout of 500 correctly segmented words is used
to optimize separate weights for unlabeled and labeled data, to prevent the
small amount of labeled words (i.e., segmented) being overwhelmed by the large
amount of unlabeled data. The results, summarized in Table 1, show that to
surpass the unsupervised state of the art (Bernhard, 2008), one needs a relatively
small list of segmented words (1000+500 for English and 100+500 for Finnish).

Paramor (Monson, 2009) is a system for unsupervised acquisition of paradigms
from a list of words. It learns paradigms and a lexicon in several steps. It first
considers all possible segmentations of words into candidate stems and endings.
Then it creates schemes (partial paradigms with the associated stems) by joining
endings that share a large number of associated stems. In the next step, similar
schemes (as measured by cosine similarity) are merged. Finally, schemes propos-
ing frequent morpheme boundaries not consistent with boundaries proposed by
the character entropy measure are discarded.

All of these models (Linguistica, Morfessor, Paramor) are strictly concate-
native and they are not suitable for discovering paradigms employing other
morphological processes (interfixes, templates, metathesis, deletion, etc.).

2.3 Allomorphy and irregularity

Many morphemes have several contextually dependent realizations, the so-called
allomorphs, due to phonological/graphemic changes or irregularities.5 There are

5Here, we exclude morpheme variance due to different paradigmatic classes. Therefore,
we consider leaf /leav (as in leaves), happy/happi (as in happier), and plural -s/-es to be
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various approaches to allomorphy in unsupervised and semi-supervised methods.
Actually, probably the most common approach, is to simply ignore it completely,
as, for example, do all the systems discussed in the previous section.

There are at least two reasons to handle allomorphy. First, linguistically,
it makes more sense to analyze winning as win+ing than as winn+ing or
win+ning, and happier as happy+er than as happ+ier. For many applica-
tions, such as information retrieval, it is helpful to know that two morphs are
variants of the same morpheme. Second, ignoring allomorphy makes the data
appear more complicated and noisier than they actually are. Thus, the process
of learning morpheme boundaries or paradigms is harder and less successful.

Since many allomorphs of the same morpheme have a similar form, some ap-
proaches (e.g., Yarowsky and Wicentowski, 2000; Oflazer et al., 2001; Cucerzan
and Yarowsky, 2002) use Levenshtein edit distance (Levenshtein, 1966) to link
them. Yarowsky and Wicentowski (2000) use edit distance to account for al-
lomorphy of stems. Rather than treating all string edits as equal, they use
weighted edit distance, i.e., their costs might be different for each pair of char-
acters. Moreover, consonant clusters and vowel clusters might be treated as a
single unit. The initial costs is set to prefer mutation of vowels over mutations
of consonants6 or costs from a similar language might be used. The values are
iteratively re-estimated.

Cucerzan and Yarowsky (2002) compile concatenative aspects of inflectional
paradigms (i.e., they list endings with their tags) on the basis of a grammar
book, ignoring all allomorphic variations. In a sense, this is similar to using
two-level morphology without any two-level rules. Obviously, many forms hy-
pothesized on the basis of such information are inaccurate. They are later
adjusted by matching them against the actual forms found in a corpus using
weighted edit distance.

Such approaches treat allomorphic changes in all places of words as equally
likely. However, most changes occur at morpheme boundaries. Wicentowski’s
(2002; 2004) WordFrame model uses a template to restrict the possible places of
changes to the point of affixation7 and the root vowel(s) (e.g., foot – feet, Vater
‘father’ – Väter ‘fathers’ in German). Cheng and See (2006) extend the model
to handle infixation.

The methods above provide the information about default suffixes manually
and the algorithm learns the allomorphic variance. Tepper and Xia (2008, 2010)

allomorphs. However, we exclude -est and most even though they both mark superlative, and
Czech -o, -́ı, -a, -ě, 0, . . . even though they all mark nominative (jmén-o ‘name’, staven-́ı
‘building’, žen-a ‘woman’, jeskyn-ě ‘cave’, pán ‘Mister’ ).

6The authors claim that this is motivated by the fact that in morphological systems world-
wide, vowels and vowel clusters tend to change more often during inflection than consonants.
However, they do not provide any reference for this claim and we were not able to find any
linguistic support for it.

7Affixation may involve allomorphic changes (often phonologically conditioned) at the lo-
cation where the affix is added, so-called points-of-affixation changes, e.g., palatalization in
Czech (matk-a ‘mother’ – matč-in ‘mother’s’). Sometimes these changes are realized only in
spelling, e.g., gemination or elision in English such as stir/stirred and close/closing, respec-
tively.
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use the opposite approach. They specify the phonological/graphemic rules man-
ually to improve unsupervised morpheme segmentation by Morfessor, an unsu-
pervised system (see Section 2.2). They have tested their system on English
and Turkish. They got significant improvements over the results of Morfessor:
F-measure rose from 47% to 60% for English and from 37% to 55% for Turkish.8

The authors needed a day to write rules for English (6 rules in total) and about
a week for Turkish (10 in total). The rules are based on comprehensive gram-
mars of English and Turkish: Huddleston and Pullum (2001) and Göksel and
Kerslake (2005), respectively. While Tepper and Xia (2008, 2010)’s approach
avoids the need of extensive manually encoded resources, they rely on detailed,
sophisticated grammars for each language. It would be interesting to see how
their system would perform using imperfect rules derived in a fraction of time.
We hypothesize that these rules would be still useful, but unfortunately, the
authors did not test this possibility.

2.4 Combination of evidence

All the systems above rely on word forms and word frequencies only, ignoring
syntax and semantics. In fact, they work on frequency annotated word types,
not on word tokens with an actual context. It has been shown by many re-
searchers (e.g., Yarowsky and Wicentowski, 2000; Schone and Jurafsky, 2000;
Baroni et al., 2002) that combining multiple sources of information gives better
results than any single of them.

For example, Yarowsky and Wicentowski (2000) present an algorithm for a
resource-light induction of present-past verb pairs (with suffixal and irregular
morphology) from a large unannotated corpus by iterative combination of four
alignment measures:

1. Alignment by frequency similarity assumes that two forms are forms of
the same verb when their relative frequency fits the expected distribution.
The distribution of irregular forms is approximated by the distribution of
regular forms. Despite large lemma frequency differences between regular
and irregular English verbs, the distributions of relative tense ratios for
both past-tense-form/present-form and gerund/present-form are similar,
e.g., the average past/present ratio for regular verbs is 0.847 and for irreg-
ular verbs is 0.842. Thus from the point of view of this metric, it is more
likely that the past tense of sing is sang than singed, because the relative
frequency of sang/sing is 1.19 while the relative frequency of singed/sing
is 0.0007.

2. Alignment by context similarity relies on the assumption that forms of
the same verb occur in the same context. This is true because subcatego-
rization and selection restrictions usually do not change for most verbal

8Unfortunatelly, the system was tested on the Morpho Challenge 2007 data (http:
//research.ics.tkk.fi/events/morphochallenge2007/) while Kohonen et al. (2010) (see
Section 2.2) tested their system on the Morpho Challege 2009 data, so the results might
not be directly comparable.
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inflections (possibly with the exception of aspect and gerunds in some lan-
guages). Thus, for example, the English verb forms pull, pulled or pulling
are all transitive and require a noun phrase object, such as her hair. To
minimize the required human supervision, the authors identify the posi-
tions of subjects and objects using a set of simple regular expressions. As
a result, many legitimate contexts are not matched. Nevertheless, the par-
tial coverage is tolerable because these expressions are applied to a large
corpus.

3. Alignment by weighted Levenshtein distance accounts for allomorphy of
stems (see §2.3).

4. Alignment by a probabilistic function mapping lemmas to inflections,
which is trained on the previous iteration of this algorithm.

Of the four measures, no single model is sufficiently effective on its own. There-
fore, traditional classifier combination techniques are applied to merge scores of
the four models.

They assume the following input: 1) a list of inflectional categories, each
with canonical suffixes; 2) a large unannotated text corpus; 3) a list of candidate
noun, verb, and adjective base forms (typically obtainable from a dictionary); 4)
a rough mechanism for identifying the candidate parts of speech of the remaining
vocabulary, not based on morphological analysis; 5) a list of consonants and
vowels; 6) optionally, a list of common function words; 7) optionally, parameters
of the model generated on previously studied languages to be used as seed
information, especially if these languages are closely related.

There are some problems though. The algorithm is successfully tested on
induction of English present-past verb pairs, but the paper uses them just as an
example claiming it can be used to induce general morphological analyzers. In
that case, however, two of the alignment measures would have to be significantly
modified or probably replaced.

• First, the frequency alignment measure works well for verbal tense, but
it would have to be modified to handle categories where one can expect
multimodal distribution. For example, consider the number of nouns:
the distribution is different for count nouns, mass nouns, plurale-tantum
nouns, etc.

• Second, the context similarity measure relies on the assumption that in-
flected forms occur in a similar context. This is true for verbs, because
subcategorization requirements usually do not change for most verbal in-
flections (possibly with the exception of aspect and gerunds in some lan-
guages). However, it is definitely not true for nominal categories: on one
hand, they have very weak selectional requirements, and on the other
hand, they are usually surrounded by agreeing attributes changing their
inflection in sync with them.
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2.5 Providing paradigms, learning lexicons

Using a basic reference grammar, it is relatively easy to provide information
about inflectional endings, possibly organized into paradigms. In some lan-
guages, an analyzer built on such information would have an acceptable accu-
racy (e.g., in English most words ending in ed are past/passive verbs, and most
word ending in est are superlative adjectives). However, in many languages, the
number of homonymous endings is simply too high for such system to be useful.
For example, the ending a has about 19 different meanings in Czech (Feldman
and Hana, 2010) as is illustrated in Table 2.

Table 2: Homonymy of the a ending in Czech (from Feldman and Hana (2010))
form lemma gloss category
měst-a město town noun neuter sg gen

noun neuter pl nom (voc)
noun neuter pl acc

tém-a téma theme noun neuter sg nom (voc)
noun neuter sg acc

žen-a žena woman noun feminine sg nom
pán-a pán man noun masculine anim sg gen

noun masculine anim sg acc
ostrov-a ostrov island noun masculine inanim sg gen
předsed-a předseda president noun masculine anim sg nom
vidě-l-a vidět see verb past feminine sg

verb past neuter pl
vidě-n-a verb passive feminine sg

verb passive neuter pl
vid-a verb transgressive masculine sg
dv-a dva two numeral masculine sg nom

numeral masculine sg acc

Therefore, several researchers have used plain text corpora to automatically
acquire a lexicon. For example, Hana et al. (2004); Hana (2008); Feldman and
Hana (2010) build a system which relies on the inclusion of a limited amount of
high-impact and low-cost manual resources while other resources are acquired
automatically. They provide manual analyses of the most frequent words9 and
endings organized into paradigms including information about simple point-of-
affixation stem changes. They call these resources “high-impact and low-cost”.
The lexicon is automatically acquired. For each form, all hypothetical lexical
entries consistent with the information about the paradigms are created. Then
competing entries are compared and only those supported by the highest number
of forms-tokens and/or form-types are retained. Most of the remaining entries
are still non-existent; however, in the majority of cases they licence the same
inflections as the correct entries, differing only in rare inflections. Table 3

9They report experiments that use 0K, 5K and 10K most frequent forms.
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Table 3: Results of (Feldman and Hana, 2010)
Language Czech (nouns) Russian Portuguese Catalan

soa
manual lexicon 0 0 0 300K 0 0 0
manual word list 0 5K 10K 0 1K 0 1K
manual paradigms + + + + + + +
manual derivations 20 20 20 ? 0 0 0
tagset size 1063 259 289
recall 94.2 96.1 96.6 98.7 93.4 98.0 95.8
ambiguity (tag/word) 11.7 8.5 4.0 3.8 2.8 3.4 2.6

A lexicon entry specifies all inflectional forms of a lemma (by referring to its paradigm).
In case of Czech, the system was evaluated on PDT 1.0 (http://ufal.mff.cuni.cz/pdt/) and
compared with the supervised state-of-the-art (soa; Hajič, 2004). Words of all POS categories
were included in the input, but the tools were evaluated on nouns only. The authors restrict
the evaluation on nouns as they are the most open class and the hardest to cover completely
by supervised tools.

To be considered correct, the Czech analysis must contain a noun tag specifying the correct

gender (4 usual values), number (2), case (7) and negation (2). In case of the other languages,

the system was evaluated on all POS’s.

summarizes the results of their system.
Similarly, Gasser (2010) uses a web-corpus and a MA guesser to expand a

seed lexicon based on an online dictionary with 598 verb roots.

2.6 Computer-assisted creation of morphological analyzer

Out of all the approaches, the one by Oflazer et al. (2001) (similar to Mikheev
and Liubushkina (1995)) is probably the closest to resource-intensive methods.
They bootstrap a morphological analyzer relying on direct human supervision
to produce two-level rules which are then compiled into a finite state transducer.
The basic ideas can be summarized as follows:

1. Paradigm definitions are provided manually. Each paradigm is specified
via an example – by listing all forms of a single word together with their
tags. Additional examples can be added to provide information about
regular and irregular allomorphy. Finally, the specification can contain a
list of lemmas inflecting according to the paradigm.

2. The examples are automatically segmented into stems and endings. Stems
are strings minimizing the sum of edit distances to all forms.

3. Transformation-based learning (Brill, 1995) is used to learn phonological
changes accompanying concatenation of a stem with an ending.

4. A morphological analyzer is created by compiling the whole specification
(stems with endings and transformations) into a finite state transducer.

5. The analyzer is tested on a corpus and all unanalyzed but “nearly an-
alyzed” forms are reported. A human adjusts the specification and the
process is repeated.

10
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The obvious disadvantage of the method is the amount of supervision needed,
which is much higher than that of any other system. However, as the system
derives both morpheme boundaries and phonological rules automatically, the
complexity of information and the level of expertise needed is significantly lower
than that of fully supervised systems described in §2.1, while the results are
probably comparable (we are not aware of any back-to-back comparison). Note
also that the adjustment in the last step is done only on the basis of unanalyzed
forms while some of the analyses provided by the system are not necessarily
correct either.

3 Tagging

Supervised taggers are usually trained on large corpora (100,000+ words) that
have been annotated by hand. In addition or instead, some taggers employ
hand-written disambiguation rules (e.g., Hajič et al., 2001). For languages with
many forms for each word, taggers often operate on the result of a morphological
analyzer to alleviate data sparsity problem (Hajič, 2000). Since both annotated
corpora and disambiguation rules are costly and tedious to produce, various less
supervised alternatives have been explored.

Note, however, that many of the taggers commonly called unsupervised (e.g.,
Merialdo, 1994; Cutting et al., 1992; Brill, 1995; Banko and Moore, 2004; Wang
and Schuurmans, 2005) are not entirely knowledge-free because they require a
list of possible tags for each form. Moreover, as Banko and Moore (2004) pointed
out these lists are usually obtained by collecting analyses from an annotated
corpus. This means they do not contain improbable analyses which makes the
task easier than disambiguating the output of a regular analyzer.

Smith and Eisner (2005) present a more resource light approach – they use a
tag dictionary only for frequent words, while infrequent words can be assigned
any tag. Similarly, Haghighi and Klein (2006) provide only several examples for
each tag. Goldwater and Griffiths (2007) present a series of experiments with
an unsupervised Bayesian tagger changing the size of the tag dictionary from a
full dictionary compiled from a corpus to no dictionary at all (reducing the task
to word clustering).

4 Conclusion

We have reviewed and compared resource-light methods for processing mor-
phology, including segmentation, analysis, tagging, lexicon induction etc. Table
4 summarizes selected resource-light approaches discussed in this survey. The
methods differ in the amount of supervision required, their accuracy, develop-
ment time, and their portability. Naturally, unsupervised systems are the most
portable and are the fastest to develop. However, they often lack precision and
granularity of linguistic analysis to be useful for practical applications. At the
same time, the development of systems that rely on manually encoded linguis-
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tic data, be it phonological or morphological rules/paradigms or just seed lists,
is clearly more time consuming. Such systems are less portable because for
each new language, a certain amount of linguistic knowledge is required to be
encoded by hand. Nevertheless, many systems that we reviewed here do not
assume the time consuming linguistic encoding, but rely only on basic facts
about a particular language. Note that Table 4 does not provide performance
scores. The reason is that these systems are not directly comparable: some deal
with morphological segmentation, others with detailed morphological analysis
or lexicon acquisition, while others with POS tagging. In addition, these ap-
proaches were tested on different languages and various sizes of corpora. Thus,
the performance numbers are meaningless out of context. Basic discussion of
performance can be found in previous sections; for full details, we refer the
interested reader to the original publications.

Our forthcoming survey (Feldman and Hana, 2012) deals with another strand
of research on resource-light morphology, namely, with cross-lingual approaches.
We will discuss various strategies to overcome the lack of training data by using
resources available for another language or dialect, be it an annotated corpus, a
grammar or a dictionary. Some approaches we discuss rely on parallel aligned
or non-aligned corpora, other transfer necessary information from the source
language to the target language only assuming access to bilingual non-parallel
corpora.
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