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Linguistica Intro Signatures Process Evaluation & Problems

Linguistica

(Goldsmith 2001)
http://linguistica.uchicago.edu/
Learns signatures (paradigms) together with roots they combine with

Completely unsupervised: input = raw text (5K-500K tokens)

Assumes suffix-based morphology
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Linguistica Intro Signatures Process Evaluation & Problems

Signatures

@ Signatures are sets of suffixes that are used with a given set of
stems.

NULL.ed.ing betray, betrayed, betraying
NULL.ed.ing.s remain, remained, remaining, remains
NULL.s cow, cows

e.ed.ing.es notice, noticed, noticing, notices

@ Similar to but not the same as paradigms:
o Includes both derivational and inflectional affixes;
e Purely corpus based, thus often not complete
See NULL.ed.ing vs NULL.ed.ing.s above (the corpus contains
remains but no betrays)
@ Purely concatenative, so blow/blew would be analyzed as bl +
ow/ew (if analyzed at all)
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Linguistica

Top English signatures

Intro Signatures Process Evaluation & Problems

Rank  Signature #Stems Rank  Signature #Stems
1 NULL.ed.ing 69 16 e.es.ing 7
2 e.ed.ing 35 17 NULL.ly.ness 7
3 NULLs 253 18 NULL.ness 20
4 NULL.ed:s 30 19 e.ing 18
5 NULL.ed.ing.s 14 20 NULL.lys 6
6 's.NULL.s 23 21  NULL.y 17
7 NULL.ly 105 22 NULL.er 16
8 NULL.ing.s 18 23  e.ed.es.ing 4
9 NULL.ed 89 24 NULL.ed.er.ing 4

10 NULL.ing 77 25  NULL.es 16
11 ed.ing 74 26 NULL.ful 13
12 's.NULL 65 27 NULL.e 13
13 eed 44 28 eds 13
14 e.es 42 29 e.ed.es 5
15 NULL.er.est.ly 5 30 ed.es.ing 5
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Linguistica Intro Signatures Process Evaluation & Problems

Process

@ A set of heuristics is used to generate candidate signatures (together
with roots they combine with)

@ The MDL metrics is used to accept or reject them
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Linguistica Intro Signatures Process Evaluation & Problems

Step 1: Candidate generation — Word segmentation

Uses heuristics to generate a list of potential affixes:

e Collect all word-tails up to length six,
o For each tail ny, ny ... ng, compute the following metric (where Ny is
the total number of tail of length k):
C(ni,no...ng) lo C(ni,m...ng)
Ny € C(n1)C(n)...C(n)
e The first 100 top ranking candidates are chosen

Other heuristics are possible

Words in the corpus are segmented according to these candidates.

For each stem collect the list associated suffixes (incl. NULL), i.e.,
the signature for that stem.

All signatures associated only with one stem or only with one suffix
are dropped.
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Linguistica Y & W SCH & J C & Y Morfessor Paramor Intro Signatures Process Evaluation & Problems

Step 2: Candidate evaluation

@ Not all suggested signatures are useful. They need to be evaluated.

@ Use Minimum Description Length to filter them
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Linguistica Intro Signatures Process Evaluation & Problems

Minimum description length (MDL)

@ Criterion for selecting among models

@ Developed by (Rissanen 1989); see also (Kazakov 1997, Marcken
1995)

@ According to MDL, the best model is the one which gives the most
compact description of the data, including the description of the
model itself.

@ In our case:

o A grammar (the model) can be used to compress a corpus.
e The better the morphological description is, the better the
compression is.

@ The size of the grammar and corpus is measured in bits.
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Linguistica Intro Signatures Process Evaluation & Problems

Evaluation

Applied to English, French, Italian, Spanish, and Latin.
Identification of morpheme boundaries in 1000-word corpus

Evaluated subjectively, because there is no gold standard

Not always clear where the boundary should be:
aboli-tion vs. abol-ish; Alexand-er, Alex-is, John-son; alumn-i

English: precision = 85.9 %; recall = 90.4 %
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Linguistica Intro Signatures Process Evaluation & Problems

Problems

@ Analyzes only suffixes (easily generalizable to prefixes as well).
@ Handling stem-internal changes would require significant overhaul.

@ All phonological /graphemic changes accompanying inflection, must
be factored into suffixes:
English: hated (hate+ed) analyzed as hat-ed
Russian: plak-at’ ‘cryj,r and plac-et ‘crypres 3p/’ analyzed as pla-kat’
/ pla-cet’

@ Considers only information contained in individual words and their
frequencies. Ignores any contextual information (reflecting
syntactical and semantical information).
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Linguistica Intro Signatures Process Evaluation & Problems

Linguistica is a strictly concatenative and therefore, it is not suitable for
discovering paradigms employing other morphological processes
(interfixes, templates, metathesis, deletion, etc.).
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Y &W Intro Similarity measures Combination Resources Problems

Yarowsky & Wicentowski 2000

@ Resource-light induction of inflectional paradigms (suffixal and
irregular).
@ Tested on induction of English/Spanish present-past verb pairs
@ Forms of the same lexeme are discovered using a combination of
four measures:
e expected frequency distributions,
e context similarity,
o phonemic/orthographic similarity,
e model of suffix and stem-change probabilities.
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Y &W Intro Similarity measures Combination Resources Problems

Process

@ Estimate a probabilistic alignment between inflected forms

@ Train a supervised morphological analysis learner on a weighted
subset of these aligned pairs.

© Use the result of Step 2 as either a stand-alone analyzer or a
probabilistic scoring component to iteratively refine the alignment in
Step 1.
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Y & W Intro Similarity measures Combination Resources Problems

Frequency similarity

@ Two forms belong to the same lexeme, when their relative frequency
fits the expected distribution.
sing/sang — 1204 /1427 — sing/singed — 1204 /9 — singe/singed — 2/9

@ The distribution is approximated by the distribution of regular forms.
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Y & W Intro Similarity measures Combination Resources Problems

Frequency similarity

@ Two forms belong to the same lexeme, when their relative frequency
fits the expected distribution.
sing/sang — 1204 /1427 — sing/singed — 1204 /9 — singe/singed — 2/9
@ The distribution is approximated by the distribution of regular forms.

@ Works for verbal tense, but sometimes one can expect multimodal
distribution.

@ For example, for nouns, the distribution is different for count nouns,
mass nouns, plurale-tantum nouns, currency names, proper nouns,
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Y & W Intro Similarity measures Combination Resources Problems

Context similarity

@ Forms of the same lemma have similar selectional preferences
@ Related verbs tend to occur with similar subjects/objects.
@ Arguments identified by simple regular expressions.

@ Neither recall nor precission is perfect, but with a large corpus this is
tolerable.
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Y & W Intro Similarity measures Combination Resources Problems

Context similarity

Forms of the same lemma have similar selectional preferences
Related verbs tend to occur with similar subjects/objects.
Arguments identified by simple regular expressions.

Neither recall nor precission is perfect, but with a large corpus this is
tolerable.

Works well for verbs, but other POS have much less strict
subcategorization requirements.

Some inflectional categories influence subcategorization, e.g., aspect
in Slavic
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Form similarity

e Form (phonemic/graphemic) similarity is measured by weighted
Levenshtein measure (Levenshtein 1966).
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Y & W Intro Similarity measures Combination Resources Problems

Form similarity

e Form (phonemic/graphemic) similarity is measured by weighted
Levenshtein measure (Levenshtein 1966).

@ Levenshtein distance (edit distance)
e Distance between two strings is the minimal number of character
substitutions, insertion or deletions
e Used in many different applications
o Can be calculated by an efficient dynamic programming algorithm
e Various modifications exists — additional operations, operations' cost
depend on the modified characters, etc.

Jirka Hana & Anna Feldman ESSLLI 2013: Computational Morphology



Y & W Intro Similarity measures Combination Resources Problems

Form similarity

Form (phonemic/graphemic) similarity is measured by weighted

Levenshtein measure (Levenshtein 1966).

@ Levenshtein distance (edit distance)

e Distance between two strings is the minimal number of character
substitutions, insertion or deletions

e Used in many different applications

o Can be calculated by an efficient dynamic programming algorithm

e Various modifications exists — additional operations, operations' cost
depend on the modified characters, etc.

Edit cost operate on character clusters

Four types of clusters are distinguished: V, V+, C, C+

Jirka Hana & Anna Feldman ESSLLI 2013: Computational Morphology



Y &W

Intro Similarity measures Combination Resources Problems

Morphological Transformation Probabilities

In step k+1, a probabilistic generative model is trained on the basis of
the analyzer obtained in step k.

P(form | root, suffix, pos) = P(a — b | root, suffix, pos) =
(cb+ s | ca,+s,pos) = P(a— b | ca,+s, pos) =

&Q

+ o+ o+ o+

A1 P(a — b | lastz(root), suffix, pos)

(1 — A1)X2P(a — b | lasty(root), suffix, pos)
(1 — X2)A3P(a — b | lasti(root), suffix, pos)
(1 — A3)AaP(a — b | suffix, pos)
(1—X4)P(a— b)
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Y &W Intro Similarity measures Combination Resources Problems

Combination

@ Of the four measures, no single model is sufficiently effective on its

own.
English present-past tense verb pairs:

Iteration  Accuracy

Frequency 1 9.8 %
Levenshtein 1 31.3%
Context 1 28.0 %
F+L+C 1 71.6 %
F+L+C+M 1 96.5%
F+L+C+M conv 99.2%

@ Therefore, traditional classifier combination techniques are applied
to merge scores of the four models.
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Y &W Intro Similarity measures Combination Resources Problems

Required resources

© 0

© 00

List of inflectional categories, each with canonical suffixes.
A large unannotated text corpus.

A list of the candidate noun, verb, and adjective base forms
(typically obtainable from a dictionary)

A rough mechanism for identifying the candidate parts of speech of
the remaining vocabulary, not based on morphological analysis

A list of consonants and vowels.
Optionally, a list of common function words.

Optionally, various distance/similarity tables generated by the same
algorithm on previously studied (related) languages - used as seed
information.
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Y &W Intro Similarity measures Combination Resources Problems

Problems

e Suffix/tail based
Generalized by (Wicentowski 2004), but no longer unsupervised.

@ The "rough” mechanism for identifying POS relies on word-order
templates. Good for English, not so much for Polish.

@ Other problems mentioned above
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Linguistica Y & W SCH & J C & Y Morfessor Paramor Algorithm Candidate affixes Computing semantic vectors Subt

Knowledge-free Induction of Morphology using LSA

@ unsupervised
@ input: a space-separated, unlabled corpus of English (8M words)

@ output: "conflation sets” of morphologically related words
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SCH & J Algorithm Candidate affixes Computing semantic vectors Subr

Their algorithm is divided into four parts:

@ Hypothesize candidate affixes

@ Identify pairs of candidate affixes which may be morphological
variants, e.g. (ed, ing) or (s, NULL).

© Collect contextual information about all word pairs which share
these morphologically variant affixes, e.g. (walked, walking) or
(walks, walk).

@ Determine “morphologically relatedness” for those word pairs with
similar semantics (as defined by their £50 word context).

@ Insert words into a trie and extract potential affixes by observing
those places in the trie where branching occurs.
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SCH & J Algorithm Candidate affixes Computing semantic vectors Subi

Hypothesize candidate affixes

Two words wl and w2 are said to be p-similar if and only if:

a. the first p characters of wl are the same as the first p characters of
w2

b. the p 4+ 1 characters of wl and w2 are not the same
Ex. walks and walking are 4-similar, as are walk and walks.

c. These pairs are not 5-similar, by rule (a), and not 3-similar, by
rule(b).
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SCH & J Algorithm Candidate affixes Computing semantic vectors Subi

Selecting candidate pairs

o Identify all pairs of affixes which descend from the same node (e.g.

s",NULL) and call these pairs rules

@ Two words which share the same stem and affix rule form a PPMV
(pair of potential morphological variants).

e For example, (“car”, “cars")
The ruleset of a rule is the set of all PPMVs that have that rule in
common. Here, the ruleset of (“s”, NULL) would be the set
“cars/car”, “cares/care” The algorithm finds the ruleset for each
rule.
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SCH & J Algorithm Candidate affixes Computing semantic vectors Sub

Computing semantic vectors

@ Decide which of the rulesets that have been generated contain pairs
of words which are semantically related.

@ S & J don't compute cosine scores directly on each vector in the
matrix; rather, they first apply singular value decomposition (SVD)
to the matrix (aka Latent Semantic Analysis or LSA; Landauer et al.
1988)

@ LSA: The matrix is projected (compressed) into a lower
k-dimensional subspace such that the k dimensions of this new
subspace are the k most informative dimensions.

@ This results in a matrix of “semantic vectors”.
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SCH & J Algorithm Candidate affixes Computing semantic vectors Sub

Comparing semantic vectors

@ Determine if a pair of words in a PPMV are semantically related by
defining a normalized cosine score, or NCS

@ Compute the NCS between two semantic vectors
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SCH & J Algorithm Candidate affixes Computing semantic vectors Sub

Sample normalized cosine scores (NCSs)

PPMV cos
ally/allies | 6.5
car/cars 5.6

dirty/dirt | 2.4

rating/rate | 0.97
car/cares | -0.14
car/caring | -0.71
car/cared | -0.96
ally/all -1.3
A score over 2.0 would be rare for a random event
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SCH & J Algorithm Candidate affixes Computing semantic vectors Sub

Ruleset-level Statistics

Determine if a rule is valid (e.g., ("s”, NULL) vs. "e", "age")
So, compute the NCS for PPMVs of a particular rule
The NCS scores for invalid PPMVs should be distributed normally

Calculate Pr(true), the probability that a particular ruleset is valid
(=non-random)
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SCH & J Algorithm Candidate affixes Computing semantic vectors Subi

Consider the rule (“es”, NULL)

@ This rule pairs together “car/cares” which have a low NCS.

@ This rule is sometimes valid (“church/churches”, “mash/mashes”,
“miss”, “misses”)

@ The problem is that we have to decide whether the rule (“es”,
NULL) is valid based on members of the ruleset and there will be a
lot of incorrect (“es”, NULL) matches (“hat/hates”, “cap/capes”,
“sit/sites”)...

...50 how can we remedy this?
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SCH & J Algorithm Candidate affixes Computing semantic vectors Subi

@ Based on the intuition that these rules are phonological variations of
other rules, we might expect to find that the (“es”, NULL) rule
applies in only specific cases.

@ If so, there should be specific environments where we'd find that
there were higher than average NCS scores:

Rule/Subrule ~ Average Std Dev # instances

("es”, NULL) 1.62 2.43 173
(“ches”, “ch”) 2.20 1.66 32
(“shes”, “sh”) 2.39 1.52 15
“res”, “r") -0.69 0.47 6

(“tes”, "t") -0.58 0.93 11
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SCH & J Algorithm Candidate affixes Computing semantic vectors Subi

Results

@ S&J set a threshold (Ts) for determining whether or not to believe
that a particular PPMV in a rule set is non-random.

(Goldsmith)  S&J S&J S&J
Linguistica  T5=0.5 T5=0.7 T5=0.85

Precision 83.0% 85.0% 90.0%  92.6%
Recall 80.4% 81.8% 79.3% 76.6%
F-Score 81.6% 83.4% 84.3% 83.9%

Jirka Hana & Anna Feldman ESSLLI 2013: Computational Morphology



SCH & J Algorithm Candidate affixes Computing semantic vectors Subi

Schone & Jurafsky 2001: Knowledge Free Induction of
Inflectional Morphology

@ Extends the Schone and Jurafsky (2000) work

@ Includes additional measures because of the shortcomings of
semantics alone.

o ("reusability”, “use") is labeled as a morphological variant but is
discarded since the words are not semantically similar enough.

e (“as’, "a") is deemed acceptable because, since they appear so
frequently, neither has much semantic information, so, in that
respect, they are semantically very similar.

@ Introduction of bad rules: “ho-/@" # "pi-/@" for “hog/pig" which
have very similar semantics [81 unique pairs].
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Bootstrapping a Multilingual Part-of-speech Tagger in One
Person-day

@ Boostrap a fine-grained, broad-coverage POS tagger in a new
language using only one personday of data acquisition effort.
@ Resources:
@ an online or hard-copy pocket-sized bilingual dictionary
@ a basic library reference grammar
© access to an existing monolingual text corpus in the language
@ Induce initial lexical POS distributions from English translations in a
bilingual dictionary without POS tags.
@ Handle irregular, regular and semi-regular morphology through a
robust generative model using weighted Levenshtein alignments.
@ Induce grammatical gender via global modeling of context window
feature agreement
@ Interactively train context and lexical prior models for fine-grained
PQOS tag spaces.
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English Natural
Gender Seeds Romanian

Context models

rFemaIe: Translations _— 0.0 m
woman T femeie 0. 1.0,0.0
queen T—= regina acest ... ﬂ.]lﬂ.‘)
aunt  {—= matuga .. mare | 0.6,0.4

Suffix models
F M
Male:
) N s [0g0d
:{an +—= barbat -¢ [0.001kF:
T I —ie [0.9(0.1}<
A—
u:l-ce unchi —ge[0.40.6/<’
=i |0.1/0.9
Test data: Romanian —t [0.01.0]
Nouns
o F M
{blood) (M) sange

0.30.7
(pleasure) (F) placere 10.9]0.1]
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Morfessor

Morfessor

Morfessor (Creutz & Lagus 2002, 2004, 2005)

@ splits words into morphemes in a hierarchical fashion

@ more suitable for agglutinative languages with a large number of
morphemes per word

@ an HMM is used to add a simple morphotactic model.
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Morfessor

kohonen:etal:2010 modify Morfessor to allow semi-supervised learning.
@ Add a set of 0-10,000 correctly segmented words

@ Optimize separate weights for unlabeled and labeled data by using a
heldout of 500 correctly segmented words
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Table : Results of kohonen:etal:2010 with various size of training data

kohonen:etal:2010 Morfessor soa
labeled data size 500 600 800 1.5K 3.5K 10.5K 0 0
English 61.1 65.2 65.6 68.3 69.1 729 59.8 66.2
Finnish 49.1 52.7 549 56.4 58.2 60.3 44.6 52.5
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Paramor

Paramor

@ Paramor (monson:2009 ) is a system for unsupervised acquisition
of paradigms from a list of words.
@ It learns paradigms and a lexicon in several steps.
@ Consider all possible segmentations of words into candidate stems
and endings.

@ Creates schemes (partial paradigms with the associated stems) by
joining endings that share a large number of associated stems.

© Similar schemes (as measured by cosine similarity) are merged.

@ Schemes proposing frequent morpheme boundaries not consistent
with boundaries proposed by the character entropy measure are
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