ESSLLI 2013: Computational Morphology Resource-light Approaches to Morphology

Jirka Hana & Anna Feldman

Jirka Hana & Anna Feldman ESSLLI 2013: Computational Morphology

同 ト イヨ ト イヨ ト

Overview

- 1
- LinguisticaIntro
- Signatures
- Process
- Evaluation & Problems
- 2 Yarowsky & Wicentowski 2000
 - Intro
 - Similarity measures
 - Combination
 - Resources
 - Problems
- Schone & Jurafsky 2000
 - Algorithm
 - Candidate affixes
 - Computing semantic vectors
 - Subrules
 - Cucerzan & Yarowsky 2002

Jirka Hana & Anna Feldman

ESSLLI 2013: Computational Morphology

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Linguistica

- (Goldsmith 2001)
- http://linguistica.uchicago.edu/
- Learns signatures (paradigms) together with roots they combine with
- Completely unsupervised: input = raw text (5K-500K tokens)
- Assumes suffix-based morphology

・ 同 ト ・ ヨ ト ・ ヨ ト

Signatures

 Signatures are sets of suffixes that are used with a given set of stems.

NULL.ed.ing	betray, betrayed, betraying
NULL.ed.ing.s	remain, remained, remaining, remains
NULL.s	cow, cows
e.ed.ing.es	notice, noticed, noticing, notices

- Similar to but not the same as paradigms:
 - Includes both derivational and inflectional affixes;
 - Purely corpus based, thus often not complete See NULL.ed.ing vs NULL.ed.ing.s above (the corpus contains *remains* but no *betrays*)
- Purely concatenative, so *blow/blew* would be analyzed as *bl* + *ow/ew* (if analyzed at all)

Intro Signatures Process Evaluation & Problems

<ロ> <同> <同> < 同> < 同>

Top English signatures

Rank	Signature	#Stems	Rank	Signature	#Stems
1	NULL.ed.ing	69	16	e.es.ing	7
2	e.ed.ing	35	17	NULL.ly.ness	7
3	NULL.s	253	18	NULL.ness	20
4	NULL.ed.s	30	19	e.ing	18
5	NULL.ed.ing.s	14	20	NULL.ly.s	6
6	's.NULL.s	23	21	NULL.y	17
7	NULL.ly	105	22	NULL.er	16
8	NULL.ing.s	18	23	e.ed.es.ing	4
9	NULL.ed	89	24	NULL.ed.er.ing	4
10	NULL.ing	77	25	NULL.es	16
11	ed.ing	74	26	NULL.ful	13
12	's.NULL	65	27	NULL.e	13
13	e.ed	44	28	ed.s	13
14	e.es	42	29	e.ed.es	5
15	NULL.er.est.ly	5	30	ed.es.ing	5

- (同) - (目) - (目)

- A set of heuristics is used to generate candidate signatures (together with roots they combine with)
- Interpretation of the provide the state of the provided and the provide

Linguistica Y & W SCH & J C & Y Morfessor Paramor Intro Signatures Process Evaluation & Problems

Step 1: Candidate generation – Word segmentation

- Uses heuristics to generate a list of potential affixes:
 - Collect all word-tails up to length six,
 - For each tail $n_1, n_2 \dots n_k$, compute the following metric (where N_k is the total number of tail of length k): $C(n_1, n_2...n_k)$ log $C(n_1, n_2...n_k)$

$$N_k$$
 $\log \frac{1}{C(n_1)C(n_2)...C(n_k)}$

- The first 100 top ranking candidates are chosen
- Other heuristics are possible
- Words in the corpus are segmented according to these candidates.
- For each stem collect the list associated suffixes (incl. NULL), i.e., the signature for that stem.
- All signatures associated only with one stem or only with one suffix are dropped.

▲御▶ ★注▶ ★注▶

Step 2: Candidate evaluation

- Not all suggested signatures are useful. They need to be evaluated.
- Use Minimum Description Length to filter them

- 4 同 6 4 日 6 4 日 6

Minimum description length (MDL)

- Criterion for selecting among models
- Developed by (Rissanen 1989); see also (Kazakov 1997, Marcken 1995)
- According to MDL, the best model is the one which gives the most compact description of the data, including the description of the model itself.
- In our case:
 - A grammar (the model) can be used to compress a corpus.
 - The better the morphological description is, the better the compression is.
- The size of the grammar and corpus is measured in bits.

(人間) (人) (人) (人) (人) (人)

Evaluation

- Applied to English, French, Italian, Spanish, and Latin.
- Identification of morpheme boundaries in 1000-word corpus
- Evaluated subjectively, because there is no gold standard
- Not always clear where the boundary *should* be: *aboli-tion vs. abol-ish; Alexand-er, Alex-is, John-son; alumn-i*
- English: precision = 85.9 %; recall = 90.4 %

Problems

- Analyzes only suffixes (easily generalizable to prefixes as well).
- Handling stem-internal changes would require significant overhaul.
- All phonological/graphemic changes accompanying inflection, must be factored into suffixes: English: *hated* (*hate+ed*) analyzed as *hat-ed* Russian: *plak-at*' 'cry_{inf} and *plač-et* 'cry_{pres.3pl}' analyzed as *pla-kat*' / *pla-čet*'
- Considers only information contained in individual words and their frequencies. Ignores any contextual information (reflecting syntactical and semantical information).

Linguistica is a strictly concatenative and therefore, it is not suitable for discovering paradigms employing other morphological processes (interfixes, templates, metathesis, deletion, etc.).

< 回 > < 回 > < 回 > <

< 回 > < 回 > < 回 >

Yarowsky & Wicentowski 2000

- Resource-light induction of inflectional paradigms (suffixal and irregular).
- Tested on induction of English/Spanish present-past verb pairs
- Forms of the same lexeme are discovered using a combination of four measures:
 - expected frequency distributions,
 - context similarity,
 - phonemic/orthographic similarity,
 - model of suffix and stem-change probabilities.

(人間) (人) (人) (人) (人) (人)

- Estimate a probabilistic alignment between inflected forms
- Train a supervised morphological analysis learner on a weighted subset of these aligned pairs.
- Use the result of Step 2 as either a stand-alone analyzer or a probabilistic scoring component to iteratively refine the alignment in Step 1.

- Two forms belong to the same lexeme, when their relative frequency fits the expected distribution. sing/sang - 1204/1427 - sing/singed - 1204/9 - singe/singed - 2/9
- The distribution is approximated by the distribution of regular forms.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Two forms belong to the same lexeme, when their relative frequency fits the expected distribution. sing/sang - 1204/1427 - sing/singed - 1204/9 - singe/singed - 2/9
- The distribution is approximated by the distribution of regular forms.
- Works for verbal tense, but sometimes one can expect multimodal distribution.
- For example, for nouns, the distribution is different for count nouns, mass nouns, plurale-tantum nouns, currency names, proper nouns,

. . .

< ロ > < 同 > < 回 > < 回 > .

Context similarity

- Forms of the same lemma have similar selectional preferences
- Related verbs tend to occur with similar subjects/objects.
- Arguments identified by simple regular expressions.
- Neither recall nor precission is perfect, but with a large corpus this is tolerable.

< 同 > < 回 > < 回 >

Context similarity

- Forms of the same lemma have similar selectional preferences
- Related verbs tend to occur with similar subjects/objects.
- Arguments identified by simple regular expressions.
- Neither recall nor precission is perfect, but with a large corpus this is tolerable.
- Works well for verbs, but other POS have much less strict subcategorization requirements.
- Some inflectional categories influence subcategorization, e.g., aspect in Slavic

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Form similarity

• Form (phonemic/graphemic) similarity is measured by weighted Levenshtein measure (Levenshtein 1966).

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Form similarity

- Form (phonemic/graphemic) similarity is measured by weighted Levenshtein measure (Levenshtein 1966).
- Levenshtein distance (edit distance)
 - Distance between two strings is the minimal number of character substitutions, insertion or deletions
 - Used in many different applications
 - Can be calculated by an efficient dynamic programming algorithm
 - Various modifications exists additional operations, operations' cost depend on the modified characters, etc.

(人間) (人) (人) (人) (人) (人)

Form similarity

- Form (phonemic/graphemic) similarity is measured by weighted Levenshtein measure (Levenshtein 1966).
- Levenshtein distance (edit distance)
 - Distance between two strings is the minimal number of character substitutions, insertion or deletions
 - Used in many different applications
 - Can be calculated by an efficient dynamic programming algorithm
 - Various modifications exists additional operations, operations' cost depend on the modified characters, etc.
- Edit cost operate on character clusters
- Four types of clusters are distinguished: V, V+, C, C+

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Morphological Transformation Probabilities

In step k+1, a probabilistic generative model is trained on the basis of the analyzer obtained in step k.

$$\begin{split} & P(\text{form } \mid \text{root}, \text{suffix}, \text{pos}) = P(a \rightarrow b \mid \text{root}, \text{suffix}, \text{pos}) = \\ & P(cb + s \mid ca, +s, \text{pos}) = P(a \rightarrow b \mid ca, +s, \text{pos}) = \\ & \approx \quad \lambda_1 P(a \rightarrow b \mid \text{last}_3(\text{root}), \text{suffix}, \text{pos}) \\ & + \quad (1 - \lambda_1)\lambda_2 P(a \rightarrow b \mid \text{last}_2(\text{root}), \text{suffix}, \text{pos}) \\ & + \quad (1 - \lambda_2)\lambda_3 P(a \rightarrow b \mid \text{last}_1(\text{root}), \text{suffix}, \text{pos}) \\ & + \quad (1 - \lambda_3)\lambda_4 P(a \rightarrow b \mid \text{suffix}, \text{pos}) \\ & + \quad (1 - \lambda_4) P(a \rightarrow b) \end{split}$$

- 4 同 6 4 日 6 4 日 6

Combination

• Of the four measures, no single model is sufficiently effective on its own.

English present-past tense verb pairs:

	Iteration	Accuracy
Frequency	1	9.8 %
Levenshtein	1	31.3%
Context	1	28.0 %
F+L+C	1	71.6 %
F+L+C+M	1	96.5%
F+L+C+M	conv	99.2%

• Therefore, traditional classifier combination techniques are applied to merge scores of the four models.

Required resources

- List of inflectional categories, each with canonical suffixes.
- A large unannotated text corpus.
- A list of the candidate noun, verb, and adjective base forms (typically obtainable from a dictionary)
- A rough mechanism for identifying the candidate parts of speech of the remaining vocabulary, not based on morphological analysis
- A list of consonants and vowels.
- Optionally, a list of common function words.
- Optionally, various distance/similarity tables generated by the same algorithm on previously studied (related) languages - used as seed information.

イロン イロン イヨン イヨン

< 同 > < 国 > < 国 >

Problems

- Suffix/tail based Generalized by (Wicentowski 2004), but no longer unsupervised.
- The "rough" mechanism for identifying POS relies on word-order templates. Good for English, not so much for Polish.
- Other problems mentioned above

伺 ト イヨト イヨト

Knowledge-free Induction of Morphology using LSA

- unsupervised
- input: a space-separated, unlabled corpus of English (8M words)
- output: "conflation sets" of morphologically related words

Their algorithm is divided into four parts:

- Hypothesize candidate affixes
- Identify pairs of candidate affixes which may be morphological variants, e.g. (ed, ing) or (s, NULL).
- Collect contextual information about all word pairs which share these morphologically variant affixes, e.g. (*walked*, *walking*) or (*walks*, *walk*).
- Oetermine "morphologically relatedness" for those word pairs with similar semantics (as defined by their ±50 word context).
- Insert words into a trie and extract potential affixes by observing those places in the trie where branching occurs.

・ロト ・回ト ・ヨト ・ヨト

- (同) - (日) - (日)

Hypothesize candidate affixes

Two words w1 and w2 are said to be p-similar if and only if:

- a. the first p characters of w1 are the same as the first p characters of w2 $\,$
- b. the p + 1 characters of w1 and w2 are not the same
 Ex. walks and walking are 4-similar, as are walk and walks.
- c. These pairs are not 5-similar, by rule (a), and not 3-similar, by rule(b).

(人間) (人) (人) (人) (人) (人)

Selecting candidate pairs

- Identify all pairs of affixes which descend from the same node (e.g. "s",NULL) and call these pairs rules
- Two words which share the same stem and affix rule form a PPMV (pair of potential morphological variants).
- For example, ("car", "cars") The ruleset of a rule is the set of all PPMVs that have that rule in common. Here, the ruleset of ("s", NULL) would be the set "cars/car", "cares/care" The algorithm finds the ruleset for each rule.

- 4 同 6 4 日 6 4 日 6

Computing semantic vectors

- Decide which of the rulesets that have been generated contain pairs of words which are semantically related.
- S & J don't compute cosine scores directly on each vector in the matrix; rather, they first apply singular value decomposition (SVD) to the matrix (aka Latent Semantic Analysis or LSA; Landauer et al. 1988)
- LSA: The matrix is projected (compressed) into a lower *k*-dimensional subspace such that the *k* dimensions of this new subspace are the *k* most informative dimensions.
- This results in a matrix of "semantic vectors".

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparing semantic vectors

- Determine if a pair of words in a PPMV are semantically related by defining a normalized cosine score, or NCS
- Compute the NCS between two semantic vectors

Algorithm Candidate affixes Computing semantic vectors Subr

・ 同 ト ・ ヨ ト ・ ヨ ト

Sample normalized cosine scores (NCSs)

PPMV	cos
ally/allies	6.5
car/cars	5.6
dirty/dirt	2.4
rating/rate	0.97
car/cares	-0.14
car/caring	-0.71
car/cared	-0.96
ally/all	-1.3

A score over 2.0 would be rare for a random event

同 ト イヨ ト イヨ ト

Ruleset-level Statistics

- Determine if a rule is valid (e.g., ("s", NULL) vs. "e", "age")
- So, compute the NCS for PPMVs of a particular rule
- The NCS scores for invalid PPMVs should be distributed normally
- Calculate Pr(true), the probability that a particular ruleset is valid (=non-random)

Consider the rule ("es", NULL)

- This rule pairs together "car/cares" which have a low NCS.
- This rule is sometimes valid ("church/churches", "mash/mashes", "miss", "misses")
- The problem is that we have to decide whether the rule ("es", NULL) is valid based on members of the ruleset and there will be a lot of incorrect ("es", NULL) matches ("hat/hates", "cap/capes", "sit/sites")...

... So how can we remedy this?

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

- Based on the intuition that these rules are phonological variations of other rules, we might expect to find that the ("es", NULL) rule applies in only specific cases.
- If so, there should be specific environments where we'd find that there were higher than average NCS scores:

Rule/Subrule	Average	Std Dev	# instances
("es" , NULL)	1.62	2.43	173
("ches" , "ch")	2.20	1.66	32
("shes" , "sh")	2.39	1.52	15
("res" , "r")	-0.69	0.47	6
("tes", "t")	-0.58	0.93	11

• S&J set a threshold (T_5) for determining whether or not to believe that a particular PPMV in a rule set is non-random.

	(Goldsmith)	S&J	S&J	S&J
	Linguistica	T5=0.5	T5=0.7	T5=0.85
Precision	83.0%	85.0%	90.0%	92.6%
Recall	80.4%	81.8%	79.3%	76.6%
F-Score	81.6%	83.4%	84.3%	83.9%

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

・ロト ・回ト ・ヨト ・ヨト

Schone & Jurafsky 2001: Knowledge Free Induction of Inflectional Morphology

- Extends the Schone and Jurafsky (2000) work
- Includes additional measures because of the shortcomings of semantics alone.
- ("reusability", "use") is labeled as a morphological variant but is discarded since the words are not semantically similar enough.
- ("as", "a") is deemed acceptable because, since they appear so frequently, neither has much semantic information, so, in that respect, they are semantically very similar.
- Introduction of bad rules: "ho-/⊘" ≠ "pi-/⊘" for "hog/pig" which have very similar semantics [81 unique pairs].

Bootstrapping a Multilingual Part-of-speech Tagger in One Person-day

- Boostrap a fine-grained, broad-coverage POS tagger in a new language using only one personday of data acquisition effort.
- Resources:
 - an online or hard-copy pocket-sized bilingual dictionary
 - a basic library reference grammar
 - access to an existing monolingual text corpus in the language
- Induce initial lexical POS distributions from English translations in a bilingual dictionary without POS tags.
- Handle irregular, regular and semi-regular morphology through a robust generative model using weighted Levenshtein alignments.
- Induce grammatical gender via global modeling of context window feature agreement
- Interactively train context and lexical prior models for fine-grained POS tag spaces.

Jirka Hana & Anna Feldman ESSLLI 2013: Computational Morphology

(1)

э

Morfessor (Creutz & Lagus 2002, 2004, 2005)

- splits words into morphemes in a hierarchical fashion
- more suitable for agglutinative languages with a large number of morphemes per word
- an HMM is used to add a simple morphotactic model.

(人間) (人) (人) (人) (人) (人)

kohonen:etal:2010 modify Morfessor to allow semi-supervised learning.

- Add a set of 0-10,000 correctly segmented words
- Optimize separate weights for unlabeled and labeled data by using a heldout of 500 correctly segmented words

(人間) (人) (人) (人) (人) (人)

Table : Results of kohonen:etal:2010 with various size of training data

		ko	honen	:etal:2	2010		Morfessor	soa
labeled data size	500	600	800	1.5K	3.5K	10.5K	0	0
English	61.1	65.2	65.6	68.3	69.1	72.9	59.8	66.2
Finnish	49.1	52.7	54.9	56.4	58.2	60.3	44.6	52.5

ヘロン 人間 とくほと 人ほとう

3

Paramor

- *Paramor* (monson:2009) is a system for unsupervised acquisition of paradigms from a list of words.
- It learns paradigms and a lexicon in several steps.
 - Consider all possible segmentations of words into candidate stems and endings.
 - Creates schemes (partial paradigms with the associated stems) by joining endings that share a large number of associated stems.
 - Similar schemes (as measured by cosine similarity) are merged.
 - Schemes proposing frequent morpheme boundaries not consistent with boundaries proposed by the character entropy measure are

- 4 同 ト 4 目 ト 4 目 ト