Morphological analysis ESSLLI 2013: Computational Morphology

Jirka Hana & Anna Feldman

Jirka Hana & Anna Feldman Morphological analysis

Processing morphology

- Lemmatization: word → lemma saw → { see, saw }
- Our Morphological analysis (MA): word → setOf(lemma + tag), ignores context saw → { (see, verb.past), (saw, noun.sg), }
- Solution 3 Tagging: word → tag (often also lemma), considers context saw @ Peter saw her. → { ⟨see, verb.past⟩ }
- Morpheme segmentation: de-nation-al-iz-ation
- **(**) Generation: $see + verb.past \rightarrow saw$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Applications

- Parsing/chunking (used in machine translation, grammar correction, etc.)
- Text Generation
- Search and information retrieval. One usually searches for a lexeme not for a particular form.
- Text-to-speech synthesis.
 read_{present} [rid] vs. read_{past} [rɛd]
 Russian: snèga_{noun.masc.sg.gen} 'snow' vs. snegà_{noun.masc.pl.nom/acc}
- Spell checking
- (Computer assisted) language learning.

直 と く ヨ と く ヨ と

Creation/Acquisition

- manually provided rules
- use machine learning
 - supervised deduced from an annotated corpus
 - o unsupervised deduced from plain text
- Interview 1 (1998)

→ ∢ Ξ

Complications Approaches Linguistic App.

(日) (日)

Morphological analysis

MA: form \rightarrow set(lemma \times set(tag))

Jirka Hana & Anna Feldman Morphological analysis

(日) (日)

Morphological analysis

MA: form \rightarrow set(lemma \times set(tag))

$$\begin{array}{rcl} \mathsf{English:} & \mathit{her} & \rightarrow & \{ (\textit{she}, & \{\mathsf{PP} \}), \\ & & (\textit{her}, & \{\mathsf{PP}\$\}) \} \end{array}$$

$$\begin{array}{rcl} {\sf Czech:} & {\check{z}enou} & \rightarrow & \left\{ \left(\begin{array}{c} {\check{z}ena} \ {}^{\sf woman'}, & \left\{ {\sf noun} \ {\sf fem} \ {\sf sing} \ {\sf inst} \right\} \right), \\ & & \left(\begin{array}{c} {\sf hn\acute{at}} \ {}^{\sf hurry'}, & \left\{ {\sf verb} \ {\sf pres} \ {\sf pl} \ {\sf 3rd} & \right\} \right) \right\} \end{array}$$

$$\begin{array}{rcl} & \check{z}eny & \rightarrow & \left\{ \left(\begin{array}{c} {\check{z}ena} \ {}^{\sf woman'}, & \left\{ {\sf noun} \ {\sf fem} \ {\sf sing} \ {\sf gen}, \\ & {\sf noun} \ {\sf fem} \ {\sf pl} \ {\sf nom}, \\ & {\sf noun} \ {\sf fem} \ {\sf pl} \ {\sf acc}, \\ & {\sf noun} \ {\sf fem} \ {\sf pl} \ {\sf voc} \end{array} \right\} \right) \right\} \end{array}$$

(4 同) (4 日) (4 日)

Complications

- Stem internal (non-concatenative) alternations: German: Stuhl → Stühl-e, Vater → Väter
- Irregularities.

English: $goose \rightarrow geese$, $sheep \rightarrow sheep$ Russian plural: $knig-a \rightarrow knig-i$, $stol \rightarrow stol-y$, but $kofe \rightarrow kofe$

- Phonological/graphemic alternations: English: knife → knive-s, city → citi-es
- Homonymy:

English -s - 3rd person singular of verbs vs. plural of nouns; Czech -a / -e (see the tables in the first lecture).

・ 同 ト ・ ヨ ト ・ ヨ ト

Different Approaches

Two different ways to address phonological/graphemic variations and complex paradigm systems when designing a morphological analyzer:

• A linguistic approach.

A phonological component accompanying the simple concatenative process of attaching an ending

- An engineering approach.
 - No (or very rudimentary) phonological component
 - Phonological changes and irregularities are factored into endings and a higher number of paradigms

- **▲ 🗇 →** 🔺 🖹

Approaches: Comparison

	woman	owl	draft	iceberg	vapor	fly
S1	žen-a	sov-a	skic-a	kr-a	p <mark>á</mark> r-a	mouch-a
S2	žen-y	sov-y	skic-i	kr-y	pár-y	mouch-y
S3	žen-ě	sov-ě	skic- <mark>e</mark>	k ř -e	pář-e	mou <mark>š</mark> -e
: P2	žen-0	sov-0	skic-0	k <mark>e</mark> r-0	par-0	m <mark>u</mark> ch-0
A ling	uistic approach					
	$\check{z}en + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$	$sov + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$	$skic + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$	$kr + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$	$p\acute{a}r + egin{cases} a \\ y \\ \check{e} \\ 0 \end{bmatrix}$	$\textit{mouch} + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$
An engineering approach						
	$\check{z}en + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$	$sov + \begin{cases} a \\ y \\ \check{e} \\ 0 \end{cases}$	$skic + \begin{cases} a \\ i \\ e \\ 0 \end{cases}$	${\bf k} + \begin{cases} {\rm ra} \\ {\rm ry} \\ {\rm \check{re}} \\ {\rm er} \end{cases}$	$\mathbf{p} + egin{cases} {ara} {ary} {are} {ar} \end{array}$	$\mathbf{m} + \begin{cases} oucha\\ ouchy\\ ouše\\ uch \end{cases}$

▲ 同 ▶ → 目 ▶

Linguistic Approach

 Phonological component accompanying the simple concatenative process of attaching an ending;

- **→** → **→**

Linguistic Approach

- Phonological component accompanying the simple concatenative process of attaching an ending;
- Advantages:
 - Small set of paradigms and morphemes
 - Captures linguistics generalizations

・ 同 ト ・ ヨ ト ・ ヨ ト

Linguistic Approach

- Phonological component accompanying the simple concatenative process of attaching an ending;
- Advantages:
 - Small set of paradigms and morphemes
 - Captures linguistics generalizations
- Problems:
 - Requires a lot of linguistic work and expertise
 - For many languages, the linguistic knowledge is not precise enough
 - It is usually not straightforward to translate even a precisely formulated linguistic description of a morphology into the representation recognized by such a system

Linguistic Approach: Finite-State Morphology

- Morphology analyzed by finite-state automata/transducers.
- It is by far the most popular approach in the field.
- (johnson:1972; kaplan-kay:81; beesley-karttunen:03).
- Two-level morphology (koskenniemi:1983; koskenniemi:1984)

What is finite state automaton (FSA)?

- Introduced by (kleene:56).
- A kind of directed graph:
 - Nodes are called states
 - Each edge is labeled with an accepted string (possibly empty)
 - One node is called the start state
 - One or more nodes are called stopping (or accepting) states
- Recognize/generate regular languages, i.e., languages specified by regular expressions.

An example

- Regular expression: colou?r
- Finite state machine:

Some properties of finite state machines

- Recognition problem can be solved in linear time (independent of the size of the automaton).
- There is an algorithm to transform each automaton into a unique equivalent automaton with the least number of states.

Deterministic Finite State Automata

A finite state automaton is deterministic iff it has

- no ϵ (empty) transitions and
- for each state and each symbol there is at most one applicable transition.

Every non-deterministic automaton can be transformed into a deterministic one:

- Define new states representing a disjunction of old states for each non-determinacy which arises.
- Define arcs for these states corresponding to each transition which is defined in the non-deterministic automaton for one of the disjuncts in the new state names.

伺 ト く ヨ ト く ヨ ト

Finite State Transducers

- Translate strings from one language to strings from another language
- Like a FSA, but each edge is associated with two strings.

Two-level morphology

Uses 2 levels

- lexical/underlying/deep forms
- surface forms
- one-one correspondence between symbols

country0+s countrie0s

伺 と く ヨ と く ヨ と …

Two-level morphology

Uses 2 levels

- lexical/underlying/deep forms
- surface forms
- one-one correspondence between symbols

	С	0	u	n	t	r	у	0	+	S
•	с	0	u	n	t	r	i	е	0	s

Two components

- Linked lexicons sets of (underlying forms of) morphemes
- Phonological rules relate lexical and surface forms

伺 ト イヨト イヨト

Intro MA Two level morphology Engineering App.

Two-level morphology – Complexity

• All this can be compiled into one big FST.

Jirka Hana & Anna Feldman Morphological analysis

・日・ ・ ヨト・

3.5

Two-level morphology – Complexity

- All this can be compiled into one big FST.
- Looks fast and efficient, but can encode any NP problem.

▲ □ ▶ ▲ □ ▶ ▲

Two-level morphology – Complexity

- All this can be compiled into one big FST.
- Looks fast and efficient, but can encode any NP problem.
- Unrestricted null-characters make it even more complex.

□ > < = > <

Two-level morphology – Complexity

- All this can be compiled into one big FST.
- Looks fast and efficient, but can encode any NP problem.
- Unrestricted null-characters make it even more complex.
- Reasonable morphology specifications are practically computationally tractable.

直 ト イヨ ト イヨ ト

Intro MA Two level morphology Engineering App.

Two-level morphology – Linked lexicons

Jirka Hana & Anna Feldman Morphological analysis

- **→** → **→**

Intro MA Two level morphology Engineering App.

Two-level morphology > Linked lexicons: Example

Jirka Hana & Anna Feldman Morphological analysis

・日・ ・ ヨト・

-

Two-level morphology – Rules

- relate underlying and surface forms
- applied simultaneously

 Form: lexical symbol : surface symbol operator context Composite rule x:y ⇔ LeftCtx _____ RightCtx x can is realized as y inn the given cxt
 Context restriction rule x:y ⇒ LeftCtx _____ RightCtx x can be realized as y only in the given cxt
 Surface coercion rule x:y ⇐ LeftCtx _____ RightCtx x must be realized as y in the given cxt
 Exclusion rule x:y ⇐ LeftCtx _____ RightCtx x cannot be realized as y in the given cxt

• y:i \Leftrightarrow _ 0:e (y - ie)

イロト 不得 トイヨト イヨト 二日

- days, spying, played, carryable
- rallies, spies, spied, happily

$\mathsf{y}\leftrightarrow\mathsf{i}\;/$

▲ 同 ▶ → 三 ▶

∃ >

- days, spying, played, carryable
- rallies, spies, spied, happily

$\mathsf{y} \leftrightarrow \mathsf{i} \ / \ \mathsf{C} \ _ + \mathsf{not}\{\mathsf{i},\mathsf{a}\}$

- 4 回 > - 4 回 > - 4 回 >

-

Intro MA Two level morphology Engineering App.

hard $+ i/\check{e}$ – depends on the origin of the vowel

$egin{array}{ll} k+\check{e}/i&{\leftarrow}\check{c}+e/i\ (1st)\ k+\check{e}/i&{\leftarrow}c+e/i\ (2nd)\ k+j&{\leftarrow}\check{c} \end{array}$	matka matka tlak	matk+in → matčin matk+ě → matce tlač+jen → tlačen
$egin{array}{l} h+\check{e}/i& o\check{z}+e/i\ (1 ext{st})\ h+\check{e}/i& o z+e/i\ (2 ext{nd})\ h+j& o\check{z} \end{array}$	bůh bůh mnoho	bůh+ě → bože bůh+i → bozi množ+jení → množení
$egin{array}{lll} g+\check{e}/i& o\check{z}+e/i\ (1st)\ g+\check{e}/i& o z+e/i\ (2nd)\ g+j& o\check{z} \end{array}$	Jaga Jaga pedagog	Jag+in → Jažin Jag+ě → Jaze pedagog+jení → pedagožení ??
$egin{array}{ccc} d+\check{e} & ightarrow /\check{d}e/ ightarrow d\check{e} \ d+j & ightarrow z \end{array}$	rada sladit	rad+ě → radě slad+jení → slazení/sladění
$t{+}\check{e} ~ ightarrow /\check{t}e/ ightarrow t\check{e}\ t{+}je ~ ightarrow ce$	teta platit	$tet+\check{e} ightarrow tet\check{e}$ plat+jeni ightarrow placeni not productive
$egin{array}{ccc} ch & ightarrow \check{s} \ n & ightarrow /\check{n}/ ightarrow n \ r & ightarrow \check{r} \end{array}$	moucha hon var	$mouch+e \rightarrow mouse$; musí hon+it \rightarrow honit; honěný var+it \rightarrow vařit; vaření

Jirka Hana & Anna Feldman

Neutral consonant $+ \check{e}$ depends on the origin of \check{e}

$b + \check{e} \rightarrow b + \check{e}$	vrba	$vrb+\check{e} ightarrow vrb\check{e}$
$b+je \rightarrow b+e$	zlobit	zlob $+$ jeni $ ightarrow$ zlobeni
$m + \check{e} \rightarrow m + \check{e}$ $m + j e \rightarrow m + \check{e}$	ě e zlomit	zlom+jený $ ightarrow$ zlomený
$p + \check{e} ightarrow p + \check{e} ightarrow p + j e ightarrow p + e e$	kropit	krop+jeni ightarrow kropeni
$v{+}\check{e} ightarrow v{+}\check{e} ightarrow v{+}je ightarrow v{+}e$	lovit	lov+jení → lovení
$s + \check{e} \rightarrow s + e$ $s + j e \rightarrow \check{s} + e$ $\rightarrow s + e$	vosa prosit kosit	vos+ě → vose pros+jení → prošení kos+jení → kosení
$z + \check{e} \rightarrow z + e$ $z + je \rightarrow \check{z} + e$ $\rightarrow z + e$	koza kazit řetězit	koz+ě → koze kazjení → kažení řetěz+jení → řetězení
$\begin{array}{ccc} l{+}\check{e} & {\rightarrow} \ l{+}e \\ l{+}je & {\rightarrow} \ l{+}e \end{array}$	škola školit	škol+ě → škole škol+jení → školení

Jirka Hana & Anna Feldman

(日) (日)

Consonant cluster + soft vowel

st+ sl+j	j ightarrowšť $j ightarrow$ šl	čistit myslit	$\label{eq:constraint} \begin{split} \ddot{c}i\dot{s}t+jeni &\to \ddot{c}i\dot{s}\dot{t}+eni \to \ddot{c}i\dot{s}t\dot{e}ni \text{ `cleaning'} \\ my\dot{s}l+jeni \to my\dot{s}leni \end{split}$
sk	ightarrowšť	kamarádský kamarádský	kamarádsk+í → kamarádští kamarádsk+ější → kamarádštější
ck	ightarrowčť	čacký čacký	čač $k+ ightarrow$ čač $t ightarrow$ čač $k+$ ějš $ ightarrow$ čačtějš $ ightarrow$
čk čk	ightarrow čc $ ightarrow$ čť	žluťoučký žluťoučký	žluťouč $k+i → žluťoučcí žluťoučk+ější → žluťoučtější$

・ロト ・回ト ・モト ・モト

3

- ¹P 1st palatalization
- [^]2P 2nd palatalization
 - ^A Assimilation (*tlak* \rightarrow *tlačen*).
 - ^N No alternation.

- ¹P 1st palatalization
- [^]2P 2nd palatalization
 - ^A Assimilation (*tlak* \rightarrow *tlačen*).
 - ^N No alternation.
- The marker is followed by a number indicating how many chars should be removed before attaching the suffix. (^1P0, ^2P0, ^1P1, ...)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- ¹P 1st palatalization
- [^]2P 2nd palatalization
 - ^A Assimilation (*tlak* \rightarrow *tlačen*).
 - ^N No alternation.
- The marker is followed by a number indicating how many chars should be removed before attaching the suffix. (^1P0, ^2P0, ^1P1, ...)
- doktorka^1P1in^2P0ých

伺 ト イヨ ト イヨ ト・

- ¹P 1st palatalization
- [^]2P 2nd palatalization
 - ^A Assimilation (*tlak* \rightarrow *tlačen*).
 - ^N No alternation.
- The marker is followed by a number indicating how many chars should be removed before attaching the suffix. (^1P0, ^2P0, ^1P1, ...)
- o doktorka¹P1in²P0ých
- doktorka → doktorčin

伺 と く ヨ と く ヨ と

- ¹P 1st palatalization
- [^]2P 2nd palatalization
 - ^A Assimilation (*tlak* \rightarrow *tlačen*).
 - ^N No alternation.
- The marker is followed by a number indicating how many chars should be removed before attaching the suffix. (^1P0, ^2P0, ^1P1, ...)
- o doktorka¹P1in²P0ých
- doktorka → doktorčin úředník → úřednice → úředničin

伺 ト イ ヨ ト イ ヨ ト

- ¹P 1st palatalization
- [^]2P 2nd palatalization
 - ^A Assimilation (*tlak* \rightarrow *tlačen*).
 - ^N No alternation.
- The marker is followed by a number indicating how many chars should be removed before attaching the suffix. (^1P0, ^2P0, ^1P1, ...)
- doktorka¹P1in²P0ých
- doktorka → doktorčin úředník → úřednice → úředničin
- 159 paradigms instead of 219

白 ト イヨ ト イヨ ト

Engineering approach

- No (or very rudimentary) phonological component
- Phonological changes and irregularities are factored into endings and a higher number of paradigms.

Therefore the terms *stem* and *ending* have slightly different meanings than they traditionally do. A stem is the part of the word that does not change within its paradigm, and the ending is the part of the word that follows such a stem.

・ 同 ト ・ ヨ ト ・ ヨ ト

Engineering approach (cont.)

- Advantages:
 - high speed;
 - simple implementation;
 - straightforward morphology specification;
- Problems:
 - high number of paradigms (e.g. around 500 for Czech);
 - Impossibility to capture even the simplest and most regular phonological changes and so predict the behavior of new lexemes;
 - in theory, incapable of capturing some languages

• (hajic:2004) for Czech; (mikheev:liubushkina:1995) for Russian

・ 同 ト ・ ヨ ト ・ ヨ ト